Skip to main content

Featured

关于对24年中国经济形势的一点看法

        今天已经是大年初五,春节也差不多接近尾声了,也是我在老家待的最后一天,刚好饭后闲来无事,终于静下心来有空写一写宏观经济分析。         回顾23年春节前的几个交易日,权益市场比较动荡,中证1000的平值隐含波动率最高冲到了91.48,要知道中证1000的实现波动率中位数也就15左右,而春节前几个交易日的连续大幅下跌和国家队快速出手使得权益市场走出深V形态,历史和隐含波动率也随之快速飙升。                另外伴随着雪球集体敲入、DMA爆仓等各类事件爆发,权益市场一片鬼哭狼嚎,就在大家都在讨论这波大A行情该谁来背锅时,证监会突发换帅。想想之前频繁出现在财经类流量博主文章中的北向、量化、公墓等,这次券商场外衍生品和私募微盘股应该也难逃一劫。都说经济繁荣时,大家都忙着数钱根本没有人在意合不合规,经济衰退时,你连呼吸都是错的,人性就是如此。关于现有微观市场体制的一些问题我之前也写过一些文章,这里不想再赘述,这里只想探讨一下宏观经济形势问题。         经济活动存在周期,这是我们初学经济学时就所熟知的,一个完整的经济周期包含繁荣、衰退、萧条和复苏四个阶段,每个阶段一般没有固定的时间长度和明显的分界线。但是如果回顾国内经济发展的历史情况,我们便可以大致发现国内经济增长开始下滑并不是近两年才开始的,三年疫情只是一场突如其来的黑天鹅,并没有影响整个大经济周期的演变方向。              从上图不难看出,从2001年加入世贸组织后,我国经济增长率同比逐年上升,呈现出快速发展的繁荣景象,也就是当时全球媒体称赞的“中国速度”。直到2008年,美国次贷危机爆发,中国也深受波及,随后政府出台了史上最大规模的“4万亿”扩张政策,虽然帮助中国摆脱了金融危机的泥潭,但也造成了后续非常严重的产能过剩、通货膨...

Total Pageviews

READING 17: DISTRIBUTIONS

Uniform Distribution
        A continuous uniform distribution is one where the probability of X occurring in a possible range is the length of the range relative to the total of all possible values. Letting a and b be the lower and upper limit of the uniform distribution, respectively, then for: a ≤ x1 ≤ x2 ≤ b,
Binomial Distribution
        The binomial distribution is a discrete probability distribution for a random variable, X, that has one of two possible outcomes, success or failure. The probability of a specific number of successes in n independent binomial trials is:

        where p = the probability of success in a given trial
Poisson Distribution
        The Poisson random variable X refers to a specific number of successes per unit. The probability for obtaining X successes, given a Poisson distribution with parameter λ is:
Normal Distribution
        The normal probability distribution has the following characteristics:
  • The normal curve is symmetrical and bell-shaped with a single peak at the exact center of the distribution.
  • Mean = median = mode, and all are in the exact center of the distribution.
  • The normal distribution can be completely defined by its mean and standard deviation because the skew is always zero and kurtosis is always three.
Lognormal Distribution
        A lognormal distribution exists for random variable Y, when Y = eX, and X is normally distributed.
Student’s t-Distribution
        The t-distribution is similar, but not identical, to the normal distribution in shape—it is defined by the degrees of freedom, has a lower peak, and has fatter tails. The t-distribution is used to construct confidence intervals for the population mean when the population variance is not known. Degrees of freedom for the t-distribution is equal to n − 1; Student’s t-distribution is closer to the normal distribution when df is greater, and confidence intervals are narrower when df is greater.
Chi-squared Distribution
        The chi-squared distribution is asymmetrical, bounded below by zero, and approaches the normal distribution in shape as the degrees of freedom increase.
F-Distribution
        The F-distribution is right-skewed and is truncated at zero on the left-hand side. The shape of the F-distribution is determined by two separate degrees of freedom.
The Central Limit Theorem
        The central limit theorem states that for a population with a mean μ and a finite variance σ2, the sampling distribution of the sample mean of all possible samples of size n will be approximately normally distributed with a mean equal to μ and a variance equal to σ2/n.
        When a sample size is large, the sums of independent and identically distributed (i.i.d.) random variables will be normally distributed.
Mixture Distribution
        Mixture distributions combine the concepts of parametric and nonparametric distributions. The component distributions used as inputs are parametric while the weights of each distribution within the mixture are based on historical data, which is nonparametric.

Popular Posts