Skip to main content

Featured

关于对24年中国经济形势的一点看法

        今天已经是大年初五,春节也差不多接近尾声了,也是我在老家待的最后一天,刚好饭后闲来无事,终于静下心来有空写一写宏观经济分析。         回顾23年春节前的几个交易日,权益市场比较动荡,中证1000的平值隐含波动率最高冲到了91.48,要知道中证1000的实现波动率中位数也就15左右,而春节前几个交易日的连续大幅下跌和国家队快速出手使得权益市场走出深V形态,历史和隐含波动率也随之快速飙升。                另外伴随着雪球集体敲入、DMA爆仓等各类事件爆发,权益市场一片鬼哭狼嚎,就在大家都在讨论这波大A行情该谁来背锅时,证监会突发换帅。想想之前频繁出现在财经类流量博主文章中的北向、量化、公墓等,这次券商场外衍生品和私募微盘股应该也难逃一劫。都说经济繁荣时,大家都忙着数钱根本没有人在意合不合规,经济衰退时,你连呼吸都是错的,人性就是如此。关于现有微观市场体制的一些问题我之前也写过一些文章,这里不想再赘述,这里只想探讨一下宏观经济形势问题。         经济活动存在周期,这是我们初学经济学时就所熟知的,一个完整的经济周期包含繁荣、衰退、萧条和复苏四个阶段,每个阶段一般没有固定的时间长度和明显的分界线。但是如果回顾国内经济发展的历史情况,我们便可以大致发现国内经济增长开始下滑并不是近两年才开始的,三年疫情只是一场突如其来的黑天鹅,并没有影响整个大经济周期的演变方向。              从上图不难看出,从2001年加入世贸组织后,我国经济增长率同比逐年上升,呈现出快速发展的繁荣景象,也就是当时全球媒体称赞的“中国速度”。直到2008年,美国次贷危机爆发,中国也深受波及,随后政府出台了史上最大规模的“4万亿”扩张政策,虽然帮助中国摆脱了金融危机的泥潭,但也造成了后续非常严重的产能过剩、通货膨...

Total Pageviews

READING 20: LINEAR REGRESSION WITH ONE REGRESSOR

Regression
        Regression analysis attempts to measure the relationship between a dependent variable and one or more independent variables.
         A scatter plot (a.k.a. scattergram) is a collection of points on a graph where each point represents the values of two variables (i.e., an X/Y pair).
Population Regression
        A population regression line indicates the expected value of a dependent variable conditional on one or more independent variables: E(Yi | Xi) = B0 + B1 × (Xi).
        The difference between an actual dependent variable and a given expected value is the error term or noise component denoted εi = Yi − E(Yi | Xi).
Sample Regression
        The sample regression function is an equation that represents a relationship between the Y and X variable(s) using only a sample of the total data. It uses symbols that are similar but still distinct from that of the population Yi = b0 + b1 × Xi + ei.
Linear Regression
        In a linear regression model, we generally assume that the equation is linear in the parameters, and that it may or may not be linear in the variables.
Ordinary Least Squares (OLS) Regression
        Ordinary least squares estimation is a process that estimates the population parameters Bi with corresponding values for bi that minimize Σei 2 = Σ[Yi − (b0 + b1 × Xi)]2. The formulas for the coefficients are:
Simple Linear Regression
        Three key assumptions made with simple linear regression include:
  • The expected value of the error term, conditional on the independent variable, is zero.
  • All (X, Y) observations are independent and identically distributed (i.i.d.).
  • It is unlikely that large outliers will be observed in the data.
Benefits of Using OLS Estimators
        OLS estimators are used widely in practice. In addition to practical benefits, OLS estimators exhibit desirable properties of an estimator.
Properties of OLS Estimators
        Since OLS estimators are random variables, they have their own sampling distributions. These sampling distributions are used to estimate population parameters. Given that the expected value of the estimator is equal to the parameter being estimated and the accuracy of the parameter estimate increases as the sample size increases, we can say that OLS estimators are both unbiased and consistent.
Measures Of Fit In Simple Linear Regression
        Explained sum of squares (ESS) measures the variation in the dependent variable that is explained by the independent variable.
         Total sum of squares (TSS) measures the total variation in the dependent variable. TSS is equal to the sum of the squared differences between the actual Y-values and the mean of Y.
         Sum of squared residuals (SSR) measures the unexplained variation in the dependent variable.
         The standard error of the regression (SER) measures the degree of variability of the actual Y-values relative to the estimated Y-values from a regression equation.
         The coefficient of determination, represented by R2, is a measure of the “goodness of fit” of the regression.
The Results Of OLS Regression
        Assuming certain conditions exist, an analyst can use the results of an ordinary least squares regression in place of an unknown population regression function to describe the relationship between the dependent and independent variable.

Popular Posts