Skip to main content

Featured

关于对24年中国经济形势的一点看法

        今天已经是大年初五,春节也差不多接近尾声了,也是我在老家待的最后一天,刚好饭后闲来无事,终于静下心来有空写一写宏观经济分析。         回顾23年春节前的几个交易日,权益市场比较动荡,中证1000的平值隐含波动率最高冲到了91.48,要知道中证1000的实现波动率中位数也就15左右,而春节前几个交易日的连续大幅下跌和国家队快速出手使得权益市场走出深V形态,历史和隐含波动率也随之快速飙升。                另外伴随着雪球集体敲入、DMA爆仓等各类事件爆发,权益市场一片鬼哭狼嚎,就在大家都在讨论这波大A行情该谁来背锅时,证监会突发换帅。想想之前频繁出现在财经类流量博主文章中的北向、量化、公墓等,这次券商场外衍生品和私募微盘股应该也难逃一劫。都说经济繁荣时,大家都忙着数钱根本没有人在意合不合规,经济衰退时,你连呼吸都是错的,人性就是如此。关于现有微观市场体制的一些问题我之前也写过一些文章,这里不想再赘述,这里只想探讨一下宏观经济形势问题。         经济活动存在周期,这是我们初学经济学时就所熟知的,一个完整的经济周期包含繁荣、衰退、萧条和复苏四个阶段,每个阶段一般没有固定的时间长度和明显的分界线。但是如果回顾国内经济发展的历史情况,我们便可以大致发现国内经济增长开始下滑并不是近两年才开始的,三年疫情只是一场突如其来的黑天鹅,并没有影响整个大经济周期的演变方向。              从上图不难看出,从2001年加入世贸组织后,我国经济增长率同比逐年上升,呈现出快速发展的繁荣景象,也就是当时全球媒体称赞的“中国速度”。直到2008年,美国次贷危机爆发,中国也深受波及,随后政府出台了史上最大规模的“4万亿”扩张政策,虽然帮助中国摆脱了金融危机的泥潭,但也造成了后续非常严重的产能过剩、通货膨...

Total Pageviews

READING 27: MODELING CYCLES: MA, AR, AND ARMA MODELS

First-order Moving Average (MA(1)) Process

        The first-order moving average process enables forecasters to consider the likely current effect on a dependent variable of current and lagged white noise error terms. While this is a useful process, it is most useful when inverted as an autoregressive representation so that current observables can be explained in terms of past observables.

General Finite-order Process(MA(q))

        While the first-order moving average process does provide useful information for forecasting, the qth-order moving average process allows for a richer analysis because it incorporates significantly more lagged error terms all the way out to the order of q.

First-order Autoregressive (AR(1)) Process

        The first-order autoregressive process incorporates the benefits of an inverted MA(1) process. Specifically, the AR(1) process seeks to explain the dependent variable in terms of a lagged observation of itself and an error term. This is a better forecasting tool if the autocorrelations decay gradually rather than cut off immediately after the first observation with a first-order process.

General pth order Autoregressive (AR(p)) Process

        The pth-order autoregressive process adds additional lagged observations of the dependent variable and enhances the informational value relative to an AR(1) process in much the same way that an MA(q) process adds a richer explanation to the MA(1) process.

Autoregressive Moving Average (ARMA) Process

        The autoregressive moving average (ARMA) process has the potential to capture more robust relationships. The ARMA process incorporates the lagged error elements of the moving average process and the lagged observations of the dependent variable from the autoregressive process.

Application of AR and ARMA processes

        Both autoregressive (AR) and autoregressive moving average (ARMA) processes can be applied to time series data that show signs of seasonality. Seasonality is most apparent when the autocorrelations for a data series do not abruptly cut off, but rather decay gradually with periodic spikes.

Popular Posts